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Spreading of a drop of neutrally buoyant
suspension
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6595 CNRS-Université de Provence, 5 rue Fermi, 13453 Marseille cedex 13, France

(Received 1 February 2005 and in revised form 8 July 2005)

The spreading of suspension drops on a flat surface is studied using mixtures of
liquid and density-matched particles. As expected from an energy balance model, the
spreading factor is reduced with increasing particle volume fraction. This decrease is
quantitatively understood through an effective viscosity coefficient. However, for large
drop Reynolds number, the particles are not uniformly distributed into a spread drop
but form an annulus. For higher impact velocities, a particle-induced break-up of the
drop is observed.

1. Introduction
A great number of industrial processes rely on the understanding of the mechanics

of the impact and spreading of liquid drops on a flat substrate. Since the pioneering
work of Worthington, there have been numerous studies of drop spreading phenomena
(see Rein 1993 for a review). Most of the studies, including viscous spreading models
(Gu & Li 1998, 2000), are based on an energy balance model (presented in § 2).
Considering a drop of diameter d0 impacting with a velocity U on a flat surface, the
spreading diameter βd0 is predicted to depend on the Reynolds number Re0 = ρd0U/η

and the Weber number We= ρd0U
2/σ (ρ is the density of the liquid, η its dynamic

viscosity and σ is the interfacial tension of the liquid with air). In the limit of a
vanishing impact velocity, the spreading factor β depends only on the contact angle
and the Bond number Bo = ρgd2

0/σ (Shikhmurzaev 1997; Reznik & Yarin 2002). For
a moderate impact velocity, the kinetic energy is dissipated by viscous forces and the
drop reaches a static state after a finite spreading time. Some fingering patterns of
the contact line may occur during this process (Thoroddsen & Sakakibara 1998). If
the initial kinetic energy is too large to be dissipated by viscosity, splashing of the
drop occurs.

Range & Feuillebois (1998) have shown that the value of the Reynolds number
Re0 at which splashing is first observed is strongly affected by the roughness of
the plane on which the drops impinges. Moreover, when the Ohnesorge number
Oh =

√
We/Re0 is small, the viscosity is negligible and the critical Re0 was found

to be inversely proportional to Oh, with the constant of proportionality depending
only on the roughness of the plate. At larger Oh, according to Stow & Hadfield
(1981) and Mundo, Sommerfeld & Tropea (1995), this critical Re0 becomes inversely
proportional to Oh0.8. This criterion can also be written as We0.5Re0.25

0 >K0, where
K0 is a constant depending on the surface roughness.

To date there has been no quantitative study of the deposition of a drop of
suspension. However, some industrial processes use a mixture of a liquid solvent and
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solid particles instead of a pure liquid. For example, an emerging application such
as a particle-laden ink jet requires small-volume droplets of suspension impacting at
high velocity (Seerden et al. 2001). Since this small-scale and fast-time phenomenon is
quite difficult to observe, a scaled experiment should help to understand the influence
of non-deformable solids on the drop spreading. We aim to describe the spreading of
a particle-laden drop impacting on a flat surface. The suspension is made of particles
with diameter dp and density equal to that of the liquid. Assuming that the particles
are initially uniformly distributed in the drop volume with a particle volume fraction
φ, the drop viscosity ηηr (φ) can be estimated using an effective viscosity model such as
the Krieger–Dougherty correlation. The relevant Reynolds number is thus modified
and is written Re = Re0/ηr (φ).

Our goal is to obtain some insight into the particle-laden drop impact phenomenon.
A predictive model for the effect of the particles on the spreading factor is proposed
and compared with experimental results. In our experiment we measure the spreading
factor and the particle position distribution in the spread drop. Two particle con-
figurations are observed: a uniform distribution for low Re0 and annular distribu-
tion for higher Re0. A qualitative analysis is suggested. For a high impact velocity,
break-up of the suspension drop may occur and can be described by a We0.5Re0.25

0 > K0

criterion. But unexpectedly, K0 is seen to decrease when the particle volume fraction
is increased.

2. Theoretical predictions
2.1. Mass and energy balance model

The spreading process involves inertial, viscous and gravity forces, the interfacial
tension and the wettability of the liquid on the solid surface. Despite this large
number of parameters, some predictions can be made using mass conservation and
energy balance equations.

The first conservation equation is the mass or volume conservation. Whatever the
shape of the spread drop (a flat disk or a spherical cap), its volume must be equal to
the volume πd3

0/6 of the spherical drop before impacting on the plane.
The second equation is a balance between energy before the impact and energy

when the spreading is over. This is written

Ek + Ep + Es = E′
k + E′

p + E′
s + Wd (2.1)

where indices k, p and s denote kinetic, potential and surface energies respectively.
The work of viscous dissipative forces during the spreading is Wd . The initial kinetic
energy is Ek = 1

12
πρd3

0U
2. After the spreading, the kinetic energy is zero: E′

k =0.
For high-velocity drop impacts (i.e. Re � 1 and We � 1), since the kinetic energy
overcomes the potential and surface energies, it is only balanced by the work of
dissipative viscous forces.

The energy dissipated by viscous forces is commonly estimated as
∫ ts

0

∫
Ω

Φ dΩdt

where ts is the time of spreading and Ω the volume of the drop. The spreading time
ts scales as d0/U and Pasandideh-Fard et al. (1996) suggested ts = (8/3)(d0/U ) as a
correct value. The volumic rate of dissipated energy Φ then scales as αη(U/L)2 with
L the typical length over which the velocity varies and α a dimensionless number.
Although this number may vary a little with the Reynolds number, we choose to
keep it constant for simplicity. For high-viscosity liquids, viscous dissipation occurs in
the whole drop volume and the mean thickness of the spread drop is L = h = 2d0/3β2

(Chandra & Avedisian 1991; Mao, Kuhn & Honghi 1997; Park et al. 2003). The energy
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ρ η σ dp d0

(g cm−3) (g cm−1) (mN m−1) Material (µm) (mm) d0/dp

L1P1 1.18 ± 0.1 0.22 ± 0.01 56.8 ± 0.5 PMMA 636 ± 24 4.7 ± 0.2 7.4 ± 0.5
L2P2 1.05 ± 0.005 0.011 ± 0.001 28.0 ± 0.4 polystyrene 720 ± 37 4.0 ± 0.2 5.5 ± 0.3
L2P3 1.05 ± 0.005 0.011 ± 0.001 28.0 ± 0.4 polystyrene 381 ± 39 4.4 ± 0.1 10.5 ± 1

Table 1. Characteristics of liquid, particles and drops of suspension.

dissipated by viscosity is then Wd = απηUd2
0β

4 and the energy balance equation (2.1)
leads to

β =

(
Re

12α

)1/4

. (2.2)

2.2. Effect of the particles on the spreading

The effective viscosity of a suspension is known to be larger than the viscosity of the
liquid alone. This increase has been the subject of numerous studies since Einstein
in 1905 and the effective viscosity of a suspension is formally written as ηs = ηf ηr (φ)
where ηr (φ) is a monotonic function of the particle fraction. For a wide range of
particle volume fraction, the Krieger–Dougherty model estimates the relative viscosity
as ηr =(1 − φ/φm)−n where φm =0.68 is the random close packing volume fraction
and n= 1.87. As stated in the introduction, the particle-laden drop Reynolds number
is Re0/ηr (φ), and assuming that (2.2) is valid, one should expect a spreading factor

β =

(
Re0

12α

)1/4 (
1 − φ

φm

)n/4

. (2.3)

And if we assume that the volume fraction is low (φ � φm), then

β ≈
(

Re0

12α

)1/4 (
1 − n

4

φ

φm

)
(2.4)

and the decrease of spreading due to particles is

dβ

dφ
= − n

4φm

(
Re0

12α

)1/4

(2.5)

which gives dβ/dφ = −0.37Re1/4
0 for α = 1. This expression is compared to experiments

in § 4.1.

3. Materials and experimental conditions
We used different liquids and particles to prepare the density-matched suspensions

(see table 1). Liquid L1 was a water and glycerol mixture and liquid L2 was salted
water. A small amount of surfactant (a liquid soap) was added to L2 to prevent
particle aggregation. Both liquids were dyed using fluoresceine. Viscosity η was
measured using a Rheomat RM 180 Couette rheometer and a Gilmont falling ball
viscosimeter. Surface tension was measured with a ring tensiometer. All experiments
and measurements were carried at T = 23 ◦C. When needed, pure liquid drop impacts
were studied.
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Figure 1. (a) Schematic diagram of the experimental apparatus. (b) Correlation between the
height of release H and the impact velocity U . The dashed line is the free-fall velocity and the
continuous line is the velocity obtained with U =

√
gH0(1 − exp(−2(H − ∆H )/H0).

Figure 1(a) shows the experimental apparatus used to produce droplets at the outlet
of a cylindrical tube and to photograph their fall and impact on a clean plate of
glass at a distance H below. A 45◦ mirror placed below the glass plate was used to
photograph the spreading while the CCD camera was focused on the vertical plane
below the tube. A stroboscopic light produced 100 to 175 flashes per second while
the camera shutter rate was 25 Hz. The flash duration was short enough to freeze the
droplet motion during the fall or the spreading. A fast camera (1000 frames s−1) was
also used to record the fast motion and the particle positions during the spreading.

Delivery of a single droplet was ensured by a home-made programmable pump
based on a translation stage driven by a PC computer through a LabView interface.
The tube had a 3 mm inner diameter and was 200 mm long. The velocity U of
each droplet was measured between two successive snapshots just before the impact.
The measured impact velocity was seen to be slightly different from the free-fall
velocity

√
2gH (see figure 1b). Since the droplet is larger than the capillary length, the

droplet is not perfectly spherical and exhibits oscillations during the fall. Since the drag
is not negligible, we assume a constant friction coefficient Cf (as suggested by Range &
Feuillebois 1998), hence the impact velocity is U =

√
gH0(1 − exp(−2(H − 
H )/H0)

where 
H is the distance between the tube and the droplet at zero velocity, and
H0 = 4ρd0/(3Cf ρair ), in good agreement with the experimental results (see figure 1b).

Once the droplet is spread on the glass plate, we computed the spreading factor

β =
√

2Aw/πd2
0 by measuring the wetted area Aw on the image. If break-up of the

drop occurred, the spreading factor was measured as the maximum diameter of the
wetted area divided by d0. For each experiment, we measured the initial drop diameter
d0, the spreading factor β , the number of particles N , the particle volume fraction

φ = N (dp/d0)
3 and the positions of each particle. We define r = 2

√
x2 + y2/βd0 the

dimensionless particle distance from the centre of impact.
In our experiments, the particle volume fraction was varied from 0 (pure liquid) to

0.45, leading to an effective viscosity 1 < ηr < 7.45. The distance H between the tube
and the glass plate was varied from 2.9 to 75.5 cm. The Reynolds number range was
79 <Re < 9907, the Weber number was 24 <We < 1276, the Ohnesorge number was
0.003 <Oh < 0.11. and the Bond number was 3.5 <Bo < 8.0.
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Figure 2. (a) Spreading factor vs. Re =Re0/ηr for pure liquid L1 (open circles) and suspension
L1P1 (filled circles). Dotted line is the prediction due to Pasandideh-Fard et al. (1996), dashed
line is (2.2) with α =1, and solid line is (2.2) with α = 0.89. (b) Effect of the particle volume
fraction on the spreading factor: Re0 = 188 (filled circles), Re0 = 292 (open circles), Re0 = 348
(filled diamonds) and Re0 = 389 (open triangles) for the suspension L1P1. The dashed lines
are the best linear trends for each set of data.

4. Results
4.1. Spreading factor and transition to a break-up regime

Experiments with the most viscous liquid L1 were done with impact velocities ranging
from 0.5 to 3.64 m s−1. The particle volume fraction was up to 30 %. No drop break-
up was observed for these ranges of parameters. The average value of Re/81β4

is 0.11 ± 0.02, suggesting that viscous dissipation occurs in the whole volume of the
drop. We compare in figure 2(a) our measurements with the spreading factor predicted
by (2.2), and the prediction made by Pasandideh-Fard et al. (1996). The spreading
factor ranges from 1.5 to 3 for a Reynolds number varying from 100 to 700. The
model is in good agreement with the experimental results if the fitting parameter α is
0.89 (solid line). For comparison, the theoretical spreading factor is shown for α = 1
(dotted line). This good agreement shows that the effective viscosity approach still
holds even if the liquid film thickness h is smaller than the particle diameter dp . This

occurs as soon as the spreading factor β is larger than
√

2d0/3dp which takes the
value 2.2 for experiments L1P1. As expected, an increase in volume fraction increases
the effective viscosity of the suspension and thus decreases the spreading factor. This
trend is shown in figure 2(b) where we present four sets of results corresponding to
four impact velocities. The error bars give an estimate of the experimental error in
the spreading factor measurements. The decrease of β can be fitted well by a linear
function, allowing measurement of dβ/dφ.

Results for the less viscous liquid (L2) are shown on figure 3. A first comment is
that the size of the particles does not seem to play a strong role in the spreading.
Secondly, β varies from 2 to 5 for a Reynolds number increasing from 500 to 10000.
The agreement of experimental results with the β predicted by (2.2) is fairly good but
the data show more scatter than those for the more viscous suspension. Nevertheless,
we still observe a decrease of β with the particle volume fraction the (figure 3b), and
dβ/dφ can still be measured using a linear fit to the experimental data.

The decrease of the spreading factor due to particles dβ/dφ is plotted in figure 4(a)
and compared to the value predicted by (2.5). The results for all the particle/fluid
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Figure 3. (a) Spreading factor vs. Re= Re0/ηr for pure liquid L2 (open circles), and suspen-
sions L2P2 (filled squares) and L2P3 (filled circles). Solid line is the (2.2) for α = 1.57, dashed
line computed with α = 1 and dotted line is computed with the expression given by Pasandideh-
Fard et al. (1996). (b) Effect of particle volume fraction on the spreading factor: suspension
L2P2 at Re0 = 3496 (open circles) and Re0 = 6118 (filled circles); suspension L2P3 at Re0 = 3326
(diamonds) and Re0 = 4917 (triangles). The dashed lines are the best linear trends for each set
of data.

–4

–3

–2

–1

0

1

2

3

4

100 1000 10000
Re0

dβ
/d

φ

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400

φ

K0 = We1/2Re1/4

Splashing

Spreading

(b)(a)

0

Figure 4. (a) Spreading reduction due to the particles L1P1 (open circles), L2P2 (filled circles)
and L2P3 (squares). The continuous line is (2.5) computed with φm =0.68, n= 1.87 and α = 1.
(b) Map of the spreading/splashing regimes in the (K0, φ)-plane: L1P1 (circles), L2P2 (squares)
and L2P3 (triangles).

combinations follow the same curve. Despite the scattering of the experimental data
for the viscous liquid L2, it shows a good agreement for Re0 < 5000: dβ/dφ is negative
and scales as Re1/4

0 . For Re0 > 5000, dβ/dφ increases and eventually becomes posi-
tive for Re0 � 6000. In that range of Reynolds number, the particles do not reduce the
spreading compared to the pure liquid impact, but on the contrary enhance the spread-
ing. The resulting impact is no longer a circular contact line, but a rather distorted
line or even several droplets formed by the break-up of the impacting drop.
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(a) (b) (c) (d)

Figure 5. Photographs of droplets impacting at the same velocity U = 2.15m s−1: (a) Liquid
L2 without particles (b) Liquid L2 without particles at φ = 0.04, (c) φ =0.13 and (d) φ = 0.30.
Pure liquid Reynolds number is Re0 = 8217.

An example of such a break-up is shown on figure 5. The four photographs depict
the effect of an increase of φ on the impact of a L2P2 suspension drop for the
same Re0 = 8217. Some particles are found outside the circle depicting the pure-liquid
spread drop. In some cases, some particles were observed to move far from the impact
point and eventually to leave the glass plate. All our observations are summarized
in figure 4(b). Following Mundo et al. (1995), we attempt to describe the break-up
regime using a critical number K0 = We0.5Re0.25

0 . This critical number seems to depend
on the volume fraction: when φ increases, K0 is unexpectedly decreased. This is in
apparent contradiction with the energy balance model.

Finally, one can observe that the particles in the spread drop are grouped in clusters.
This is due to surface tension effects because the liquid film thickness h is lower than
the particle diameter. The particles deform the liquid/air interface and increase its
surface energy. This is very similar to what happens in a raft of floating bubbles
(Bragg & Nye 1947), where the interaction between two bubbles can be described by
a potential analogue to the interaction potential between two atoms (Shi & Argon
1982). The attractive force between two particles at a liquid–gas interface has also
been studied by Joseph et al. (2003).

4.2. Particle distribution in the spread drop

For each experiment we measured the dimensionless radial particle positions r and
computed the probability Pr (r) for a particle to be at a distance r from the spread
drop centre. The probability density function (p.d.f.) of the position is P (r, θ) and

must satisfy π−1
∫ 2π

0

∫ 1

0
P (r, θ)r dθ dr = 1. Assuming that the spreading is axisymetric,

P does not depend upon θ , and P = Pr/2r . The maximum value of the p.d.f. P (r)
denotes the preferred position for the particles in the spread drop.

We show on figure 6(a, b) the particle positions and the probability P for the
suspension L1P1 for a Reynolds number Re0 < 807. The probability has a weak
maximum for r < 0.1 and is nearly constant for 0.1 <r < 0.7. As can be seen on
figure 6(a) the particles seem randomly dispersed in a disk of radius r ≈ 0.7. The
probability density decreases strongly for r > 0.7 which is the signature of a depletion
of particles near the boundary of the droplet.

The situation is quite different for suspensions made with a less viscous liquid.
Figure 6(c, d) shows the particle positions and the p.d.f. for drops L2P3 with Re0 ≈
3350. The maximum of the p.d.f. is for a radius 0.4 <r < 0.5 and the depletion of
particles occurs in the centre of the droplet (r < 0.2) as well as in the outer annulus
(r > 0.7). This situation was also observed for higher Reynolds numbers (Re0 ≈ 5000)
as well for the drops of suspension L2P2. Whatever the liquid and the particles,
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Figure 6. (a) Particle position distribution in the spread droplet and (b) radial probability P
for L1P1, 140 <Re 0 < 807 and 0.03 <φ < 0.28. (c) Particle position distribution in the spread
droplet and (d) radial probability P for L2P3, 3184 <Re0 < 3513 and 0.11< φ < 0.16. Data
were collected from different runs.

it seems that there is no obvious dependence of the position distribution upon the
particle volume fraction.

The annular distribution of particles for Reynolds numbers larger than 3000 may
be explained by the oscillation of the liquid during the spreading. If the spreading is
governed by viscous forces (low Re0), all the momentum of the liquid is dissipated
during the time needed to reach a steady contact line between the drop and the solid
substrate. Conversely, if inertial forces are large enough, a fraction of momentum
may remain after the contact line motion has stopped. A raised rim then forms at
the periphery and the central liquid pool thins out. The rim is then pulled back
towards the centre since the interfacial tension minimizes the liquid/air contact area.
We suggest that the particles follow the liquid oscillations qualitatively, as they are
density matched with the liquid. Moreover, if the local thickness of the liquid is lower
than the particle diameter dp , the interface is deformed and its motion may create a
force acting on the particle. In the same manner, the periphery of the drop has a very
low thickness and this prevents the particles getting close to the contact line, creating
a depletion of particles for large r values (r > 0.7 from our results).

This assumption has been checked with the video recording large frame rate
(1000 f.p.s.) of a drop spreading for a Reynolds number at which the annular distribu-
tion of particles occurs. We show on figure 7 the time evolution of the spreading
factor β(t) and the motion of one test particle on the same time scale. While the drop
contact line stops growing 7ms after the impact, the test particle still moves, reaches
a maximum radial position at t = 19 ms, and then moves back to reach a steady
position at t =48 ms. The particles are thus observed to move after the spreading
factor has reached a constant value.

5. Conclusion
We have studied the impact, spreading and break-up of a liquid drop containing

solid density-matched particles. Using an effective viscosity model for the drop,
the spreading factor scales as Re1/4, and the effect of solid particles is quantitatively
described. A uniform particle distribution in the spread drop is observed for Re � 800
and an annular distribution is observed for larger values of the Reynolds number.
The periphery of the drop is always depleted of particles owing to interfacial forces
acting on the particles. For a large impact velocity, break-up of the drop is observed.
The break-up criterion takes the form We1/2Re1/4

0 > K0(φ) where K0 decreasing when
φ increases.
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Figure 7. Time evolution of the spreading factor β(t) (open circles) compared to the
normalized radial position of a test particle (filled circles) for suspension L2P2. The Reynolds
number was Re0 = 6500 and the particle volume fraction was φ = 0.02.

Some clusters of particles were also observed for the less viscous liquid. This feature
demonstrates the interaction of the particles with the liquid/air interface, and this
issue is surely connected with the unexpected transition from the spreading to the
break-up regime. This might suggest a further study of the forces and stresses between
a particle and an interface.

The author thanks É. Guazzelli for discussions and help.
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